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ABSTRACT

In an open periodic structure with finite
length, a new interaction between the guided-wave

and the leaky-wave regions in the u-~ diagram

does occur. The effect of such an interaction on

the characteristics is investigated rigorously by

using our network approach already proposed [1].

Numerical calculations show that the finite length

of periodic structures significantly affects the

stopband characteristics of the first Bragg
reflection region, especially in producing a

complicated behavior of the return loss due to
radiation. This paper also shows that such a

return loss behavior can be easily estimated from

the radiation characteristics of only the first step

discontinuity of the periodic structure.

INTRODUCTION

The periodic corrugations placed on top of

dielectric waveguides are widely applied to various

components in the millimeter-wave and optical-wave

regions, by employing the Bragg reflection and the

leaky-wave phenomena. In a periodic structure

with infinite length, the guided-wave region where
the Bragg reflection occurs, is non radiative in

spite of its open nature, so that components such
as filters and resonators based on the design

approach in terms of the infinite periodic structure
have been proposed. However, if the length of

such a structure becomes finite as seen in

practical components, the mutual interference

between the guided-wave and the leaky-wave

regions does occur, so that the radiation always

exists even in the stopband corresponding to the

Bragg reflection. The influence of such a radiation

which has significant effects on practical

component design, has not yet been clear because

of no effective analytical method for this problem.

So the present authors have proposed the

unprecedented network approach to solve it

[1], [2]. Our approach regards the finite periodic
structure as a cascade of the step discontinuities

and the uniform guides, and derives its

characteristics from the accurate network

representation which considers the wave with the

continuous spectrum discretized by the Legendre

transform, together with the surface wave.

In this paper, we apply our network approach

to periodic structures with various step

discontinuities and investigate the behavior of

radiation wave in the stopband region, which

sometimes contributes significantly to the

performance of the circuit components.

ANALYSIS

We briefly describe our network approach. It is

necessary first to analyze a step discontinuity

problem. In order to make the discussions clear,

the even type TE -mode excitation of a symmetric

step is considered in Fig. 1, where the structure is

uniform in the y direction. The extension to

asymmetric steps or to the TM case presents no

difficulty. In the analysis of open waveguides, one

always encounters a big difficulty: how to
discretize the continuous spectrum which does not

extend in the whole range of spectrum, but in a
limited narrow range of it in case of usual

discontinuities, so that the well-known Lagguere
transform [3] , [4] is not always effective,

especially from the view point of numerical

convergence and also cost performance.

To circumvent this difficulty, our approach

[ 5] , [6] already discussed successfully for several

kinds of step discontinuity problem divides the

continuous spectrum into three ranges; one

corresponds to the radiation part, the second is an

optimally scaled extent of the reactive part, and

the third, disregarded here, is the rest of the

reactive part. Then, we have only to discreti ze
independently the spectrum in each range by

means of the Legendre transform to which the
normalized Legendre functions provide the complete

set of basis functions in each range.
This approach is quite adaptive to arbitrary

distributions of the continuous spectrum and is

extremely cost effective yet accurate. Such a

discretization makes it possible to derive the

equivalent net work including radiation phenomena

for a junction plane of both guides as shown in

Fig. 2. In this network, we have the terminal ports

corresponding to the radiation part and to the

reactive part of the continuous spectrum, together

with the ports corresponding to the surface waves.

It should be noted here that the definition of

terminal ports of the continuous spectrum is
different from that of surface-wave ports, that is,

each port for the continuous spectrum does not

correspond to a field distribution defined by an

eigenvalue like the surface wave, but corresponds

to a wave group consisting of a continuous

spectrum expressed by one of Legendre functions.

Next, let us consider the interaction with the

neighboring discontinuities via uniform guide

section. Along such a uniform guide, the discrete

surf ace - wave mode can propagate without coupling
each other, and the guide can be expressed by a
finite number of uncoupled transmission lines. on

the other hand, the functional form of the
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continuous spectrum part changes as the wave

radiates from the discontinuity in both forward and

backward directions. This radiation phenomenon, if

it is viewed from our spectral domain approach of

Fig. 2, is understood as that the complex amplitude

of a wave group expressed by a Legendre function

changes continuously along the uniform guide.

This change in functional form means that a wave
group characterized by a Legendre function

continuously couples with other wave groups

associated with different Legendre functions. As a
re suit, the equivalent transmission line

representation same wit h that for surface-wave

modes makes no sense for the continuous spectrum

ports and it is necessary to introduce the

equivalent circuits RI and R2 to express a

uniform guide section as shown in Fig. 3. It is easy

to obtain the circuit parameters of Ri by

calculating g the complex amplitude of each Legendre
function at the right ( the left ) terminal plane of

Ri when a group with k t h Legendre function is
inputted from the left ( the right ) side of Ri .

The model shown in Fig. 3 is amenable to ordinary
microwave network approach, and the periodic

structures with a finite length can be easily

analyzed by the cascaded connection of such

networks.

NUMERICAL RESULTS

We here concentrates on the effect of the

geometric variation of the periodic structures on

the characteristics. To make comparison easy, the
~eometry of such structures is chosen so that the

:agg reflection can occur at the almost same
equency even for different structures. To this

ld , we have only to consider a unit cell shown in
Fig. 4, where each guide has the phase

constant (3o+A B and B o- A Bat the mid-stopband
frequency, respectively. Then the average phase

constant of the unit cell becomes

approximately 60- for the structures having the

various values of A (3 .

We assume here a condition of (3dko = 1.2,

d~ldz= d12 and nl= 1.5 as shown in Fig.4 and

each guide with thickness t i ( I = 1,2 ) can
support only the dominant surface - wave mode. In

Figs. 5(a) and (b), the calculated results of the
reflection power of the dominant TE surface-wave
mode and the forward radiation power as well as

the backward one are indicated for A 6/k ~ = 0.04 (

tl/tz= 1.46 ) and A6/kO = 0.12 ( tl/tz= 3.44 ),

respectively. The results are shown for different

number of unit cells Nc ( i.e. the length of

periodic structure ) as a function of the

normalized period kod. It is found that the Bragg

reflection occurs at around kod = 1.3 in both

figures, and the structure with large step, that
is, A ~/k o = 0.12 has broader stopband than that

with small step, A B/k o = 0.04. However, except the
width of the stopband and the power level, it
seems that the behavior of reflection and radiation

characteristics in the stopband region is almost
same. So we next pay attenuation to such

characteristics for the various values

of A B/k o corresponding to thickness ratio of guides

tl/t2. Fig. 6 shows the mid- stopband attenuation

for various Nc as a function of t ~ It z . The

attenuation becomes large as Nc and

t I It 2 increase, and in the case of Fig. 5(b), the

mid- stopband attenuation attains about 30 dB for
Nc = 20. However, it should be noted from
Fig. 5(b) that the forward and backward radiation
powers in the stopband region are not so small
that we may neglect it; the return loss of the
surface- wave mode has as much as 0.5 dB.
Figs. 7(a) and (b) show the maximum forward and
backward radiation powers within the stopband
region. On the other hand, the dotted line in

Fig. 7(a) indicates the forward radiation power
calculated for the isolated step discontinuity of

Fig. 1 when the surface wave is inputted from the

- z direction. It is found from this figure that such

a characteristic is quite similar with that indicated

by the solid line. This fact gives us an insight
that the forward radiation of the finite periodic

structure strongly depends on the miss-matching

of the impedances of both sides just at the input
port, that is, the characteristic of the first step

discontinuity of the periodic structure. The dotted

line in Fig.7(b) also indicates the forward
radiation by the isolated step in case of the wave

incidence from another side ( i.e. from the +Z

direction ). This assumption is based on the

behavior of the reflected wave at the mid-stopband

frequency, because most of the incident power
returns back to the input port or the first step at

that frequency. This result also shows a good

agreement with the solid line. Thus we may
conclude that both forward and backward radiation

powers in the periodic structure with finite length

strongly depend on the radiation characteristics of
its first step discontinuity even though Nc
increases. This is an important problem for

designing of the grating filters, antennas and so
on.

To overcome this problem, it will be necessary

that the input portion of the periodic structure is

made non uniform with taper section. For such a

structure, the published methods are not effective
at all, but our approach can perform the analysis

theoretically and such discussions will be included

in the oral presentation.
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Planar dielectric step discontinuity, where
even TE -mode incidence is considered.
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Equivalent net work representation for the
discontinuity shown in Fig. 1, where the wave
with continuous spectrum is regrouped dis -
cret ely in terms of Legendre functions P .

P(3m and (3m’ mean the eigenvalues of sur ace-
wave modes, while p means the transverse
wave number of continuous wave in the air
region. a is an arbitrary constant larger
than unity.

n,=l.5
~—d—+ d,=dz=d/2

Equivalent net work representation for a Fig.4.
structure consisting of two step discontinu-
ities connected with a uniform guide. The
equivalent circuit Ri is necessary to express
the coupling among wave groups character-
ized by Legendre functions.
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Unit cell composing the periodic structure.
The guides with thickness t 1 and t x have the
phase constants (3O+A 6 and 60- A (3, respec-

tively.
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Fig.5. Calculated reflection
with a finite length.
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and radiation powers for a periodic structure
(a) A~/k O = 0.04, (b) A~/kO = 0.12.
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Fig. 7. Maximum (a) forward and (b) backward radiation powers within
the stopband region for various numbers of unit cell Nc.
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