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ABSTRACT

In an open periodic structure with finite
length, a new interaction between the guided-wave
and the leaky-wave regions in the w-8 diagram
does occur. The effect of such an interaction on
the characteristics is investigated rigorously by
using our network approach already proposed [1].
Numerical calculations show that the finite length
of periodic structures significantly affects the
stopband characteristics of the first Bragg
reflection region, especially in producing a
complicated behavior of the return loss due to
radiation. This paper also shows that such a
return loss behavior can be easily estimated from
the radiation characteristics of only the first step
discontinuity of the periodic structure.

INTRODUCTION

The periodic corrugations placed on top of
dielectric waveguides are widely applied to various
components in the millimeter-wave and optical-wave
regions, by employing the Bragg reflection and the
leaky-wave phenomena. In a periodic structure
with infinite length, the guided-wave region where
the Bragg reflection occurs, is non radiative in
spite of its open nature, so that components such
as filters and resonators based on the design
approach in terms of the infinite periodic structure
have been proposed. However, if the length of
such a structure becomes finite as seen in
practical components, the mutual interference
between the guided-wave and the Ileaky-wave
regions does occur, so that the radiation always
exists even in the stopband corresponding to the
Bragg reflection. The influence of such a radiation
which  has  significant effects on practical
component design, has not yet been clear because
of no effective analytical method for this problem.
So the present authors have proposed the
unprecedented network approach to solve it
[11,[2]. Our approach regards the finite periodic
structure as a cascade of the step discontinuities
and the wuniform guides, and derives its
characteristics from the accurate network
representation which considers the wave with the
continuous spectrum discretized by the Legendre
transform, together with the surface wave.

In this paper, we apply our network approach
to periodic structures with  various  step
discontinuities and investigate the behavior of
radiation wave in the stopband region, which
sometimes contributes significantly to the
performance of the circuit components.
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ANALYSIS

We briefly describe our network approach. It is
necessary first to analyze a step discontinuity
problem. In order to make the discussions clear,
the even type TE-mode excitation of a symmetric
step is considered in Fig.1l, where the structure is
uniform in the y direction. The extension to
asymmetric steps or to the TM case presents no
difficulty. In the analysis of open waveguides, one
always encounters a big difficulty: how to
discretize the continuous spectrum which does not
extend in the whole range of spectrum, but in a
limited narrow range of it in case of wusual
discontinuities, so that the well-known Lagguere
transform [3]1,141 is not always effective,
especially from the view point of numerical
convergence and also cost performance.

To circumvent this difficulty, our approach
[5],[6] already discussed successfully for several
kinds of step discontinuity problem divides the
continuous spectrum into three ranges; one
corresponds to the radiation part, the second is an
optimally scaled extent of the reactive part, and
the third, disregarded here, is the rest of the
reactive part. Then, we have only to discretize
independently the spectrum in each range by
means of the Legendre transform to which the
normalized Legendre functions provide the complete
set of basis functions in each range.

This approach is quite adaptive to arbitrary
distributions of the continuous spectrum and is
extremely cost effective yet accurate. Such a
discretization makes it possible to derive the
equivalent network including radiation phenomena
for a junction plane of both guides as shown in
Fig.2. In this network, we have the terminal ports
corresponding to the radiation part and to the
reactive part of the continuous spectrum, together
with the ports corresponding to the surface waves.
it should be noted here that the definition of
terminal ports of the continuous spectrum is
different from that of surface-wave ports, that is,
each port for the continuous spectrum does not
correspond to a field distribution defined by an
eigenvalue like the surface wave, but corresponds
to a wave group consisting of a continuous
spectrum expressed by one of Legendre functions.

Next, let us consider the interaction with the
neighboring discontinuities via uniform guide
section. Along such a uniform guide, the discrete
surface-wave mode can propagate without coupling
each other, and the guide can be expressed by a
finite number of uncoupled transmission lines. On
the other hand, the functional form of the
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continuous spectrum part changes as the wave
radiates from the discontinuity in both forward and
backward directions. This radiation phenomenon, if
it is viewed from our spectral domain approach of
Fig.2, is understood as that the complex amplitude
of a wave group expressed by a Legendre function
changes continuously along the uniform guide.
This change in functional form means that a wave
group characterized by a Legendre function
continuously couples with other wave groups
associated with different Legendre functions. As a
result, the equivalent transmission line
representation same with that for surface-wave
modes makes no sense for the continuous spectrum
ports and it is necessary to introduce the
equivalent circuits R; and R, to express a
uniform guide section as shown in Fig.3. It is easy
to obtain the circuit parameters of R; by
calculating the complex amplitude of each Legendre
function at the right ( the left ) terminal plane of
R; when a group with kth Legendre function is
inputted from the left ( the right ) side of R; .
The model shown in Fig.3 is amenable to ordinary

microwave network approach, and the periodic
structures with a finite length can be easily
analyzed by the cascaded connection of such
networks.

NUMERICAL RESULTS

We here concentrates on the effect of the
geometric variation of the periodic structures on
the characteristics. To make comparison easy, the
ceometry of such structures is chosen so that the

ragg reflection can occur at the almost same
equency even for different structures. To this
1d, we have only to consider a unit cell shown in
rig.4, where each guide has the phase
constant Bo+AB and Bo-ABat the mid-stopband
frequency, respectively. Then the average phase
constant of the unit cell becomes
approximately Bofor the structures having the
various values of AR

We assume here a condition of 8¢ke= 1.2,
di/d2= d/2 and ni= 1.5 as shown in Fig.4 and
each guide with thickness t; (i = 1,2 ) can
support only the dominant surface-wave mode. In
Figs.5(a) and (b), the calculated results of the
reflection power of the dominant TE surface-wave
mode and the forward radiation power as well as
the backward one are indicated for AB/ke= 0.04 (
ti/t2= 1.46 ) and AB/ke = 0.12 ( t1/t.= 3.44 ),
respectively. The results are shown for different
number of unit cells Nec ( i.e. the length of
periodic structure ) as a function of the
normalized period kod. It is found that the Bragg
reflection occurs at around koed = 1.3 in both
figures, and the structure with large step, that
is, AB/ko = 0.12 has broader stopband than that
with small step, AB/ko= 0.04. However, except the
width of the stopband and the power level, it
seems that the behavior of reflection and radiation
characteristics in the stopband region is almost
same. So we next pay attenuation to such
characteristics for the various values
of AB/ko corresponding to thickness ratio of guides

ti /t2. Fig.6 shows the mid-stopband attenuation
for various Nc¢ as a function of t;/t,. The
attenuation becomes large as Ne and
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ti/t2increase, and in the case of Fig.5(b), the
mid-stopband attenuation attains about 30 dB for
Ne¢ = 20. However, it should be noted from
Fig.5(b) that the forward and backward radiation
powers in the stopband region are not so small
that we may neglect it; the return loss of the
surface-wave mode has as much as 0.5 dB.
Figs.7(a) and (b) show the maximum forward and
backward radiation powers within the stopband
region. On the other hand, the dotted line in
Fig.7(a) indicates the forward radiation power
calculated for the isolated step discontinuity of
Fig.1l when the surface wave is inputted from the
-z direction. It is found from this figure that such
a characteristic is quite similar with that indicated
by the solid line. This fact gives us an insight
that the forward radiation of the finite periodic
structure strongly depends on the miss-matching
of the impedances of both sides just at the input
port, that is, the characteristic of the first step
discontinuity of the periodic structure. The dotted
line in Fig.7(b) also indicates the forward
radiation by the isolated step in case of the wave
incidence from another side ( i.e. from the +z
direction ). This assumption is based on the
behavior of the reflected wave at the mid-stopband
frequency, because most of the incident power
returns back to the input port or the first step at
that frequency. This result also shows a good
agreement with the solid line. Thus we may
conclude that both forward and backward radiation
powers in the periodic structure with finite length
strongly depend on the radiation characteristics of
its first step discontinuity even though Nc
increases. This is an important problem for
designing of the grating filters, antennas and so
on.

To overcome this problem, it will be necessary
that the input portion of the periodic structure is
made non uniform with taper section. For such a
structure, the published methods are not effective
at all, but our approach can perform the analysis
theoretically and such discussions will be included
in the oral presentation.
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Fig.1. Planar dielectric step discontinuity, where

even TE-mode incidence is considered.
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Fig.3. Equivalent network representation for a

structure consisting of two step discontinu-
ities connected with a uniform guide. The
equivalent circuit R; is necessary to express
the coupling among wave groups character-
ized by Legendre functions.
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Fig.2. Equivalent network representation for the

discontinuity shown in Fig.1, where the wave
with continuous spectrum is regrouped dis-
cretely in terms of Legendre functions Py .
Bm and Bp,' mean the eigenvalues of surface-
wave modes, while p means the transverse
wave number of continuous wave in the air
region. o is an arbitrary constant larger
than unity.

n;= 1.5
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Bo+AB, Bo-AB

Fig.4. Unit cell composing the periodic structure.

The guides with thickness t; and t, have the
phase constants R,+AB and Bo-AB, respec-
tively.
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Fig.5. Calculated reflection and radiation powers for a periodic structure
with a finite length. (a) AB/ky = 0.04, (b) AR/ky = 0.12,
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unit cell Nc. the stopband region for various numbers of unit cell Nc.
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